CORRECTION DU DEVOIR SURVEILLÉ N° 5

Angles orientés, trigonométrie et second degré

Le 11 décembre 2009

Exercice 1

1) 2) a) \(\overrightarrow{BA} ; \overrightarrow{AC} = (-\overrightarrow{AB} ; \overrightarrow{AC}) = (\overrightarrow{AB} ; -\overrightarrow{AC}) + \pi = \frac{\pi}{6} + \frac{\pi}{6} = \frac{7\pi}{6} \).

Or \(\frac{7\pi}{6} \) n’est pas une mesure principale, et \(\frac{7\pi}{6} - 2\pi = -\frac{5\pi}{6} \).

Donc la mesure principale de \(\overrightarrow{BA} ; \overrightarrow{AC} \) est \(-\frac{5\pi}{6}\).

b) \(\overrightarrow{BC} ; \overrightarrow{CA} = (\overrightarrow{BC} ; \overrightarrow{BA}) + (\overrightarrow{BA} ; \overrightarrow{CA}) \) d’après la relation de Chasles.

D’où : \(\overrightarrow{BC} ; \overrightarrow{CA} = -\overrightarrow{BA} ; \overrightarrow{BC} + \overrightarrow{BA} ; \overrightarrow{CA} = \frac{\pi}{5} + \frac{\pi}{6} - \frac{11\pi}{30} \).

Donc la mesure principale de \(\overrightarrow{BC} ; \overrightarrow{CA} \) est \(\frac{11\pi}{30} \).

c) \(\overrightarrow{CA} ; \overrightarrow{CB} = (\overrightarrow{CA} ; \overrightarrow{BA}) + (\overrightarrow{BA} ; \overrightarrow{CB}) \) d’après la relation de Chasles.

D’où : \(\overrightarrow{CA} ; \overrightarrow{CB} = (\overrightarrow{AC} ; -\overrightarrow{AB}) + (\overrightarrow{BA} ; -\overrightarrow{BC}) \)

\(= (\overrightarrow{AC} ; \overrightarrow{AB}) + (\overrightarrow{BA} ; \overrightarrow{BC}) + \pi \)

\(= \frac{\pi}{6} + \frac{\pi}{5} + \pi = \frac{19\pi}{30} \) \(\)

Donc la mesure principale de \(\overrightarrow{CA} ; \overrightarrow{CB} \) est \(\frac{19\pi}{30} \).

Exercice 2

1) Restitution organisée de connaissances :

Soit \((C)\) le cercle trigonométrique de centre \(O\).

La demi-droite \((OM)\) coupe \((C)\) en \(N\).

\(N\) a pour coordonnées \((\cos \theta ; \sin \theta)\).

Or \(OM = \rho \) ON ; on en déduit que \(\overrightarrow{OM}\) a pour coordonnées \((\rho \cos \theta ; \rho \sin \theta)\).

D’autre part : \(OM^2 = x^2 + y^2 = \rho^2\).
2) a) $OM = \sqrt{2^2 + (2\sqrt{3})^2} = \sqrt{4 + 12} = 4$.

De plus, $x = 2 = 4 \times \frac{1}{2} = 4 \cos \left(\frac{\pi}{3} \right)$ et $y = 2\sqrt{3} = 4 \times \frac{\sqrt{3}}{2} = 4 \sin \left(\frac{\pi}{3} \right)$.

Par conséquent, les coordonnées polaires de M dans le repère $(O ; \vec{i})$ sont $(4 ; \frac{\pi}{3})$.

b) Dans le repère $(O ; \vec{i}, \vec{j})$, le point B a pour coordonnées $(1 ; 1)$.

Par conséquent, les coordonnées polaires de B dans le repère $(O ; \vec{i})$ sont $(1 ; \frac{\pi}{4})$.

c) $(\vec{i} ; \overline{OP}) = (\vec{i} ; \overline{OB}) + (\overline{OB} ; \overline{OP}) = \frac{\pi}{4} + \frac{5\pi}{12} = \frac{8\pi}{12} = \frac{2\pi}{3}$. De plus, $OP = 4$.

Par conséquent, les coordonnées polaires de P dans le repère $(O ; \vec{i})$ sont $(4 ; \frac{2\pi}{3})$.

Donc $x = 4 \cos \left(\frac{2\pi}{3} \right) = 4 \times \left(-\frac{1}{2} \right) = -2$ et $y = 4 \sin \left(\frac{2\pi}{3} \right) = 4 \times \frac{1}{2} = 2$.

Par conséquent, le point P a pour coordonnées $(-2 ; 2)$ dans le repère $(O ; \vec{i}, \vec{j})$.

Exercice 3
1) On a : $\frac{9\pi}{10} = \pi - \frac{\pi}{10}$ et $\frac{6\pi}{10} = \pi - \frac{4\pi}{10}$.

Or, pour tout réel θ, $\cos(\pi - \theta) = -\cos\theta$.

D'où : $\cos \left(\frac{9\pi}{10} \right) = \cos \left(\pi - \frac{\pi}{10} \right) = -\cos \left(\frac{\pi}{10} \right)$ et $\cos \left(\frac{6\pi}{10} \right) = \cos \left(\pi - \frac{4\pi}{10} \right) = -\cos \left(\frac{4\pi}{10} \right)$.

Par conséquent, $A = \cos \left(\frac{\pi}{10} \right) + \cos \left(\frac{4\pi}{10} \right) + \cos \left(\frac{6\pi}{10} \right) + \cos \left(\frac{9\pi}{10} \right) = 0$.

2) On a : $\frac{4\pi}{5} = 2\pi - \frac{6\pi}{5}$ et $\frac{2\pi}{5} = 2\pi - \frac{8\pi}{5}$.

Or, pour tout réel θ, $\sin(2\pi - \theta) = \sin(-\theta) = -\sin(\theta)$.

$B = -\sin \left(\frac{8\pi}{5} \right) - \sin \left(\frac{6\pi}{5} \right) + \sin \left(\frac{6\pi}{5} \right) + \sin \left(\frac{8\pi}{5} \right) = 0$

Exercice 4
1) $\cos(3x) = \frac{1}{2}$ ⇔ $\cos(3x) = \cos \left(\frac{\pi}{3} \right)$

$\Leftrightarrow \begin{align*}
3x &= \frac{\pi}{3} + 2k\pi \\
&\text{ou} \\
3x &= -\frac{\pi}{3} + 2k\pi
\end{align*} (k \in \mathbb{Z})$
\[
\cos(3x) = \frac{1}{2} \quad \Leftrightarrow \quad \left\{ \begin{array}{l}
x_1 = \frac{\pi}{9} \; \text{ou} \; x_2 = \frac{\pi}{9} + \frac{2\pi}{3} = \frac{7\pi}{9} \; \text{ou} \; x_3 = \frac{\pi}{9} + \frac{4\pi}{3} = \frac{13\pi}{9} \\
\end{array} \right.
\]

ou
\[
\left\{ \begin{array}{l}
x_1 = -\frac{\pi}{9} \; \text{ou} \; x_2 = -\frac{\pi}{9} + \frac{2\pi}{3} = \frac{5\pi}{9} \; \text{ou} \; x_3 = -\frac{\pi}{9} + \frac{4\pi}{3} = \frac{11\pi}{9} \\
\end{array} \right.
\]

Or la mesure principale de \(\frac{13\pi}{9}\) est égale à \(-\frac{5\pi}{9}\), et celle de \(\frac{11\pi}{9}\) est égale à \(-\frac{7\pi}{9}\).

Par conséquent, \(S = \left\{ -\frac{7\pi}{9} ; -\frac{5\pi}{9} ; -\frac{\pi}{9} ; \frac{\pi}{9} ; \frac{5\pi}{9} ; \frac{7\pi}{9} \right\} \).

2) \(\cos(3x) \geq \frac{1}{2} \Leftrightarrow -\frac{\pi}{3} \leq 3x \leq \frac{\pi}{3} \Leftrightarrow -\frac{\pi}{9} \leq x \leq \frac{\pi}{9}\). Par conséquent, \(S = \left[-\frac{\pi}{9} ; \frac{\pi}{9} \right] \).

3) Posons \(X = \cos(3x)\). Alors \(2\cos^2(3x) + 3\cos(3x) - 2 = 0\) équivaut à \(2X^2 + 3X - 2 = 0\).

Calculons le discriminant \(\Delta\) de ce trinôme : \(\Delta = 3^2 - 4 \times 2 \times (-2) = 25\).

Comme \(\Delta > 0\), alors l’équation \(2X^2 + 3X - 2 = 0\) admet deux solutions :
\[
X_1 = -\frac{3 - 5}{4} = -2 \quad \text{et} \quad X_2 = -\frac{3 + 5}{4} = \frac{1}{2}.
\]

Or l’équation \(\cos(3x) = -2\) n’admet pas de solution, et l’équation \(\cos(3x) = \frac{1}{2}\) admet 6 solutions d’après la question 1).

Donc \(S = \left\{ -\frac{7\pi}{9} ; -\frac{5\pi}{9} ; -\frac{\pi}{9} ; \frac{\pi}{9} ; \frac{5\pi}{9} ; \frac{7\pi}{9} \right\} \).

Exercice 5

1) a) \(Om = \sqrt{\left(\frac{-3\sqrt{3}}{2}\right)^2 + \left(\frac{3}{2}\right)^2} = \sqrt{\frac{27}{4} + \frac{9}{4}} = \sqrt{9} = 3\).
\[
\begin{align*}
\cos(\theta_m) &= -\frac{3\sqrt{3}}{2} = -\frac{\sqrt{3}}{2} \\
\sin(\theta_m) &= \frac{3}{2} = \frac{1}{2}
\end{align*}
\]

 donc \(\theta_m = \frac{5\pi}{6} + 2k\pi \quad (k \in \mathbb{Z}). \)

Par conséquent, les coordonnées polaires de \(m \) sont \(\left(3 ; \frac{5\pi}{6} \right) \).

b) On remarque que \(\overrightarrow{i} ; \overrightarrow{OM}_2 = -\frac{\pi}{6} + \pi = \frac{5\pi}{6} = \overrightarrow{i} ; \overrightarrow{OM}. \)

Par conséquent, \(m \) appartient à \(d_2 \).

2) D’après les hypothèses, \(\overrightarrow{v}_1 \) et \(\overrightarrow{v}_2 \) ont pour coordonnées respectives \((v_1 \cos(\alpha) ; v_1 \sin(\alpha)) \) et \((v_2 \cos(-\alpha) ; v_1 \sin(-\alpha)) \), c’est-à-dire

\((v_1 \cos(\alpha) ; v_1 \sin(\alpha)) \) et \((v_2 \cos(\alpha) ; -v_1 \sin(\alpha)) \).

\(\text{Or} \quad v_1 = v_2 = 1 \text{ m.s}^{-1}, \quad \text{et} \cos(\alpha) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \quad \text{et} \sin(\alpha) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}. \)

Donc, \(\overrightarrow{v}_1 \) et \(\overrightarrow{v}_2 \) ont pour coordonnées respectives \(\left(\frac{\sqrt{3}}{2} ; \frac{1}{2} \right) \) et \(\left(\frac{3}{2} ; \frac{1}{2} \right) \).

3) a) Comme \(\overrightarrow{OM}_1 = t \overrightarrow{v}_1 \), alors

\[
\begin{align*}
x_{M_1} &= 0 = t \times \frac{\sqrt{3}}{2} \\
y_{M_1} &= 0 = t \times \frac{1}{2}
\end{align*}
\]

Par conséquent, \(M_1 \) a pour coordonnées \(\left(\frac{\sqrt{3} t}{2} ; \frac{t}{2} \right) \).

Comme \(\overrightarrow{mM}_2 = t \overrightarrow{v}_2 \), alors

\[
\begin{align*}
x_{M_2} - x_m &= t \times \frac{3}{2} \\
y_{M_2} - y_m &= -t \times \frac{1}{2}
\end{align*}
\]

Par conséquent, \(M_2 \) a pour coordonnées \(\left(\frac{\sqrt{3} (t - 3)}{2} ; \frac{-t + 3}{2} \right) \).

b) \(M_1 M_2 = \sqrt{(x_{M_2} - x_{M_1})^2 + (y_{M_2} - y_{M_1})^2} = \sqrt{\left(\frac{3\sqrt{3}}{2} \right)^2 + \left(\frac{-2t + 3}{2} \right)^2} = \sqrt{\frac{27}{4} + 4t^2 - 12t + 9}. \)

Par conséquent, \(M_1 M_2 = \sqrt{t^2 - 3t + 9} \).

4) a) Comme \(f \) est une fonction polynôme du second degré et que le coefficient du monôme \(x^2 \) est positif, alors la fonction \(f \) admet un minimum atteint en \(t = -\frac{b}{2a} \) avec \(a = 1 \) et \(b = -3 \), c’est-à-dire en \(t = \frac{3}{2} \).
b) On remarque que $M_1M_2 = \sqrt{f(t)}$. Comme les fonctions f et \sqrt{f} ont les mêmes variations sur $[0 ; +\infty[$, alors la distance M_1M_2 est minimale à l’instant $t = \frac{3}{2}$.

Dans ce cas, $M_1M_2 = \sqrt{\left(\frac{3}{2}\right)^2 - 3 \times \frac{3}{2} + 9} = \sqrt{\frac{9}{4} - \frac{9}{2} + 9} = \sqrt{\frac{9 - 18 + 36}{4}} = \sqrt{\frac{27}{4}} = \frac{3\sqrt{3}}{2}$.

Par conséquent, les deux mobiles sont le plus proches l’un de l’autre lorsque $t = \frac{3}{2}$, et la distance minimale entre ces deux mobiles est égale à $\frac{3\sqrt{3}}{2}$ mètres.